
03/03/2025, 17:18 exercise4.ipynb - Colab

https://colab.research.google.com/drive/1ANoDra1YlHV2fKVSgNpb_mFdZ8wbBK1h#scrollTo=8728c240&printMode=true 1/8

Notebook created by Martin Schrimpf, edited by Alejandro Rodriguez Guajardo and Yingtian Tang.

Week 4: Preparation -- data loading & basics of data structure

In the computational modeling exercises, we will analyze electrode recordings from rhesus macaques as they view static images. The ventral
visual stream in the monkey brain consists of a hierarchical cascade of regions, progressing from the primary visual area (V1) to the
secondary visual area (V2), then to the fourth visual area (V4), and finally to the inferior temporal area (IT). This stream conducts increasingly
complex computations, with V1 and V2 processing color and texture, V4 integrating shape and intermediate features, and IT performing high-
level object categorization. We will develop skills to denoise and visualize these neural recordings, probe the information they encode, and
construct predictive computational models.

This week, the task is straightforward—we will set up our environment to run the jupyter notebook on Google Colab (upload this .ipynb file to
the Google Drive and open it). You should ensure that all dependencies are installed properly and that neuroscientific data can be loaded
from Brain-Score. The specific setup details will be provided below. Additionally, we include information to help you better understand the
data structure in Python.

The jupyter notebook is a notebook of interleaved Markdown and Python blocks. All of the blocks can be executed: Markdown blocks turn
into text (so when they look strange, just execute them); Python blocks execute the code while keeping the variables so they can be used in
other Python blocks. You can check more information on the basics of jupyter notebook starting from this section of the whole webpage.

This notebook consists of the following sessions:

Load Data: load the experimental V1 neural data
Stimuli: load the stimuli used for the recording experiment
Basics of DataAssembly: learn some specifics about the data structure DataAssembly
Basics of StimulusSet: learn some specifics about the data structure StimulusSet
Additional materials: some extra information, just in case you are interested

Please execute each block sequentially until the end (you can skip Additional materials). This time, your only task is to ensure that everything
runs correctly and to read the outputs. However, we encourage you to explore the data structure and thoroughly understand its operations.
This will establish a strong foundation for progressively more challenging exercises in the future.

Additional hints for using the jupyter notebook:

You can open some temporary Python blocks as your scratchpad.
Be careful of the ordering of running Python blocks, since the variables are shared.

Now, we install the dependencies. You can install them by executing the following block. You should wait for this block to finish before
running any other blocks. (The following code might require you to restart runtime, which is fine)

BIOENG-310: Neuroscience Foundations for Engineerskeyboard_arrow_down

!pip install jupyter brainscore-vision matplotlib

At the current state, it can unfortunately often be difficult to access brain recordings. Not all groups share their data (although new
regulations are improving this), and even if the data is accessible it is often difficult to interact with due to non-standard file formats,
missing/unclear metadata, and obscure processing pipelines.

That being said, we will here save you the headache by starting from a packaged and standardized dataset. This data was first published by
Freeman* & Ziemba* et al. 2013 and subsequently packaged into the Brain-Score platform. The format of the data here is in xarray, a
structure allowing for multi-dimensional data with multiple metadata along all dimensions. If you know pandas, xarray is the multi-
dimensional extension of it. Check basics of xarray here and pandas here, but we will lead you through some of them in the last two sections.

Load Datakeyboard_arrow_down

https://colab.research.google.com/
https://www.google.com/url?q=https%3A%2F%2Fworkspace.google.com%2Fproducts%2Fdrive%2F
https://www.google.com/url?q=https%3A%2F%2Fjupyter-notebook.readthedocs.io%2Fen%2Flatest%2Fnotebook.html%23markdown-cells
https://www.google.com/url?q=https%3A%2F%2Fjupyter-notebook.readthedocs.io%2Fen%2Flatest%2Fnotebook.html%23code-cells
https://www.google.com/url?q=https%3A%2F%2Fjupyter-notebook.readthedocs.io%2Fen%2Flatest%2Fnotebook.html%23notebook-user-interface
https://www.google.com/url?q=https%3A%2F%2Fwww.nature.com%2Farticles%2Fnn.3402
https://colab.research.google.com/drive/www.brain-score.org
https://www.google.com/url?q=https%3A%2F%2Fxarray.dev
https://www.google.com/url?q=https%3A%2F%2Ftutorial.xarray.dev%2Foverview%2Fxarray-in-45-min.html
https://www.google.com/url?q=https%3A%2F%2Fwww.w3schools.com%2Fpython%2Fpandas%2Fdefault.asp

03/03/2025, 17:18 exercise4.ipynb - Colab

https://colab.research.google.com/drive/1ANoDra1YlHV2fKVSgNpb_mFdZ8wbBK1h#scrollTo=8728c240&printMode=true 2/8

%matplotlib inline
import brainscore_vision

brainscore will download the data for you
data = brainscore_vision.load_dataset('FreemanZiemba2013.public')

we'll focus on only V1 recordings in this exercise
v1_data = data.sel(region='V1')

By just typing the name of a variable, jupyter will show its content (like a 'print' command).
In this case, the xarray 'v1_data' will be presented with (scroll in the below to have a full view; toggle on the left to
1. basics of this data structure: bytes, shape, data type, etc.
2. a graphical representation of its different dimensions
3. a section called 'coordinates' that shows the names of the dimensions and their associated values
v1_data

03/03/2025, 17:18 exercise4.ipynb - Colab

https://colab.research.google.com/drive/1ANoDra1YlHV2fKVSgNpb_mFdZ8wbBK1h#scrollTo=8728c240&printMode=true 3/8

/usr/local/lib/python3.11/dist-packages/brainscore_core/metrics/__init__.py:16
 class Score(DataAssembly):
brainscore-storage/brainio-brainscore/assy_movshon_FreemanZiemba2013_public.nc
brainscore-storage/brainio-brainscore/stimulus_FreemanZiemba2013_aperture-publ
brainscore-storage/brainio-brainscore/stimulus_FreemanZiemba2013_aperture-publ
xarray.NeuronRecordingAssembly 'movshon.FreemanZiemba2013.public'
(neuroid_id: 102, time_bin: 300, presentation: 2700)

Array Chunk
Bytes 630.34 MiB 630.34 MiB
Shape (102, 300, 2700) (102, 300, 2700)
Dask graph 1 chunks in 3 graph layers
Data type float64 numpy.ndarray

27002700

30
0

30
0

102
102

▼Coordinates:
neuroid_id (neuroid_id) int64 1 2 3 4 5 6 ... 98 99 100 101 102
time_bin (time_bin) MultiIndex (time_bin_start, time_bin_end)
time_bin_start (time_bin) int64 0 1 2 3 4 5 ... 295 296 297 298 299
time_bin_end (time_bin) int64 1 2 3 4 5 6 ... 296 297 298 299 300
presentation (presentation) MultiIndex (repetition, image_id, stimulus_id, sample, …
repetition (presentation) int64 0 1 2 3 4 5 6 ... 14 15 16 17 18 19
image_id (presentation) object 'dfa618e0503a4251582450e88daf0c2...
stimulus_id (presentation) object 'dfa618e0503a4251582450e88daf0c2...
sample (presentation) int64 2 2 2 2 2 2 2 2 ... 2 2 2 2 2 2 2 2
filename (presentation) object 'noise-320x320-im327-smp2.png'
image_file_sha1 (presentation) object 'dfa618e0503a4251582450e88daf0c2...
image_file_name (presentation) object 'noise-320x320-im327-smp2.png'
texture_family (presentation) int64 327 327 327 327 327 ... 71 71 71 71
resolution (presentation) object '320x320' '320x320' ... '320x320'
id (presentation) int64 133388 133388 ... 133334 133334
image_id_witho… (presentation) object '0e8609dc2778a848d7ed8b355d93311...
texture_type (presentation) object 'noise' 'noise' ... 'texture'

▼Attributes:
stimulus_set_id… FreemanZiemba2013.aperture-public
stimulus_set : image_id sample \

0 21041db1f26c142812a66277c2957fb3e2070916 5
1 0d9074b184dd4abbd8dd79500d8869e90e3759f0 15
2 28528e98f687f3790cb2d35ef1374aef0ff12bb9 3
3 22eb327d95d9d18fc3cfdb3cb7122e49eb8cd5b9 13
4 5a49c84be5539e3b1b7b4f767c74b1355cf5145a 12
..
130 65a263b58b098973995a40d39785f1776b3e757d 7
131 1e4309bec2dc7f15d30dcb5768d6f5ae06928086 8
132 bad7530828a8c6aab2ebaa83f34a1353efe0c395 6
133 b429ff650a6f868b5124cc04c6d79ec69fb35c73 6
134 d01f48d87a4b49f50c021c612da9d3180488f6ba 10

 filename image_file_sha1 \
0 noise-320x320-im38-smp5.png 21041db1f26c142812a66277c2957fb3e2
070916
1 tex-320x320-im393-smp15.png 0d9074b184dd4abbd8dd79500d8869e90
e3759f0
2 tex-320x320-im30-smp3.png 28528e98f687f3790cb2d35ef1374aef0ff12
bb9
3 noise-320x320-im18-smp13.png 22eb327d95d9d18fc3cfdb3cb7122e49eb
8cd5b9
4 noise-320x320-im18-smp12.png 5a49c84be5539e3b1b7b4f767c74b1355c
f5145a
..
130 noise-320x320-im327-smp7.png 65a263b58b098973995a40d39785f177
6b3e757d
131 noise-320x320-im38-smp8.png 1e4309bec2dc7f15d30dcb5768d6f5ae06
928086
132 noise-320x320-im56-smp6.png bad7530828a8c6aab2ebaa83f34a1353e
fe0c395
133 tex-320x320-im48-smp6.png b429ff650a6f868b5124cc04c6d79ec69fb3
5c73
134 tex-320x320-im30-smp10.png d01f48d87a4b49f50c021c612da9d31804
88f6ba

 image_file_name texture_family resolution id \
0 noise-320x320-im38-smp5.png 38 320x320 133032
1 tex-320x320-im393-smp15.png 393 320x320 133033
2 tex-320x320-im30-smp3.png 30 320x320 133035
3 noise-320x320-im18-smp13.png 18 320x320 133040
4 noise-320x320-im18-smp12.png 18 320x320 133041
..
130 noise-320x320-im327-smp7.png 327 320x320 133468
131 noise-320x320-im38-smp8.png 38 320x320 133469
132 noise-320x320-im56-smp6.png 56 320x320 133470
133 tex-320x320-im48-smp6.png 48 320x320 133472
134 tex-320x320-im30-smp10.png 30 320x320 133473

 image_id_without_aperture texture_type \
0 6ddcf4b55f9151ac77250706510dcd00fdfb466e noise

03/03/2025, 17:18 exercise4.ipynb - Colab

https://colab.research.google.com/drive/1ANoDra1YlHV2fKVSgNpb_mFdZ8wbBK1h#scrollTo=8728c240&printMode=true 4/8

0 6ddcf4b55f9151ac77250706510dcd00fdfb466e noise
1 cd5d18cc4d174dc89d9c07951c208fdceb568ac2 texture
2 95689155a87077e7a5c5dfd93aa8cdf51da16e04 texture
3 ac2a808a4bd86810f4ae9aedce65e1ec79e03ba4 noise
4 8278ab60ef19334b2dc54fa0b06091a968ef703d noise
..
130 01e8fc3aebd53914cc4c0a9321a8759054bd79f3 noise
131 81581e8d38dec64d3746851aa4e45e33457d0bf8 noise
132 43de5603b357dce25a030bbc3611abdaef5cb805 noise
133 844305832982a3f3482d2fbf1e36edaeb1528387 texture
134 54f31d7e051b8c28164ba0253fd21b619d817e3d texture

 stimulus_id
0 21041db1f26c142812a66277c2957fb3e2070916
1 0d9074b184dd4abbd8dd79500d8869e90e3759f0
2 28528e98f687f3790cb2d35ef1374aef0ff12bb9
3 22eb327d95d9d18fc3cfdb3cb7122e49eb8cd5b9
4 5a49c84be5539e3b1b7b4f767c74b1355cf5145a

How did this data come about in the first place? Primate subjects were presented with images while experimenters were recording from early
visual cortex.

What are those images?

Stimulikeyboard_arrow_down

%matplotlib inline
from matplotlib import pyplot, image

The xarray 'v1_data' has 3 attributes (accesse all of them by 'v1_data.attrs')
1. stimulus_set_identifier: name of the stimulus set
2. stimulus_set: a brainscore StimulusSet (a subclass of pandas.Dataframe) that records all the information about the st
3. identifier: name of the whole experiment
stimuli = v1_data.stimulus_set

a shortcut to access the *first* stimulus is in the stimulus set
single_stimulus_id = stimuli['stimulus_id'].values[0]

use a method 'get_stimulus' of StimulusSet to get the stimulus storage path given the id
image_path = stimuli.get_stimulus(single_stimulus_id)

show the image using matplotlib
image_content = image.imread(image_path)
pyplot.imshow(image_content, cmap='gray')
pyplot.show()

Let's take a closer look at the v1_data and stimuli we got, starting with v1_data .

Basics of DataAssemblykeyboard_arrow_down

the 'type' function returns the 'Class' of a Python variable, i.e., its data structure.
reference: https://www.w3schools.com/python/python_classes.asp
class_of_v1_data = type(v1_data)
class_of_v1_data

03/03/2025, 17:18 exercise4.ipynb - Colab

https://colab.research.google.com/drive/1ANoDra1YlHV2fKVSgNpb_mFdZ8wbBK1h#scrollTo=8728c240&printMode=true 5/8

brainio.assemblies.NeuronRecordingAssembly
def __init__(*args, **kwargs)

A NeuronRecordingAssembly is a NeuroidAssembly containing data recorded from

ignore this code if you cannot understand it immediately
print(f"The ancestor of NeuronRecordingAssembly is {class_of_v1_data.__bases__[0].__bases__[0].__bases__[0]}.")

The ancestor of NeuronRecordingAssembly is <class 'xarray.core.dataarray.DataArray'>.

We can see that the v1_data has a class named NeuronRecordingAssembly .

This NeuronRecordingAssembly inherits from xarray.DataArray , so it shares all the methods and operations of xarray.DataArray .

Let's see some basic operations in the following. We only show 'sizes' of some xarrays, but you can open up a new Python block to check the
full information yourself.

import xarray as xr
import numpy as np

checking the shape of the DataArray
print("\n* Shape of v1_data:")
print(v1_data.shape)
print(v1_data.sizes)

accessing data values in v1_data
print("\n* Data stored in v1_data is a numpy array:")
print(type(v1_data.values))

indexing: select a specific element
print("\n* Slice at neuroid_id=102, time_bin=200ms:")
print(v1_data.sel(neuroid_id=102, time_bin=200).sizes)

slicing: select a range along the 'neuroid_id' axis
print("\n* Slice at neuroid_id=1 and 99:")
print(v1_data.sel(neuroid_id=[1, 99]).sizes)

arithmetic operation: adding 1 to all elements
print("\n* DataArray after adding 10:")
v1_data_plus_10 = v1_data + 10
print(f"The first element changed from {v1_data.values[0,0,0]} to {v1_data_plus_10.values[0,0,0]}")

apply function: Mean along 'time_bin' axis
print("\n* Mean along 'time_bin' axis:")
print(v1_data.mean(dim='time_bin').sizes)

groupby the stimulus_id and take the mean of each group
print("\n* Sizes after averaging within groups that share the same stimulus id:")
print(v1_data.groupby('stimulus_id').mean().sizes)

accessing coordinates along 'presentation' axis
print("\n* Coordinates along 'presentation' axis:")
print(v1_data['presentation'].coords)

see more information about xr.DataArray: https://docs.xarray.dev/en/stable/generated/xarray.DataArray.html
see more xarray operations: https://tutorial.xarray.dev/fundamentals/03.1_computation_with_xarray.html

* Shape of v1_data:
(102, 300, 2700)
Frozen({'neuroid_id': 102, 'time_bin': 300, 'presentation': 2700})

* Data stored in v1_data is a numpy array:
<class 'numpy.ndarray'>

* Slice at neuroid_id=102, time_bin=200ms:
Frozen({'time_bin_end': 1, 'presentation': 2700})

* Slice at neuroid_id=1 and 99:
Frozen({'neuroid_id': 2, 'time_bin': 300, 'presentation': 2700})

* DataArray after adding 10:
The first element changed from 0.0 to 10.0

* Mean along 'time_bin' axis:
Frozen({'neuroid_id': 102, 'presentation': 2700})

* Sizes after averaging within groups that share the same stimulus id:
Frozen({'neuroid_id': 102, 'time_bin': 300, 'stimulus_id': 135})

03/03/2025, 17:18 exercise4.ipynb - Colab

https://colab.research.google.com/drive/1ANoDra1YlHV2fKVSgNpb_mFdZ8wbBK1h#scrollTo=8728c240&printMode=true 6/8

* Coordinates along 'presentation' axis:
Coordinates:
 * presentation (presentation) MultiIndex
 - repetition (presentation) int64 0 1 2 3 4 ... 15 16 17 18 19
 - image_id (presentation) object 'dfa618e0503a4251582450e...
 - stimulus_id (presentation) object 'dfa618e0503a4251582450e...
 - sample (presentation) int64 2 2 2 2 2 2 ... 2 2 2 2 2 2
 - filename (presentation) object 'noise-320x320-im327-smp...
 - image_file_sha1 (presentation) object 'dfa618e0503a4251582450e...
 - image_file_name (presentation) object 'noise-320x320-im327-smp...
 - texture_family (presentation) int64 327 327 327 327 ... 71 71 71
 - resolution (presentation) object '320x320' ... '320x320'
 - id (presentation) int64 133388 133388 ... 133334
 - image_id_without_aperture (presentation) object '0e8609dc2778a848d7ed8b3...
 - texture_type (presentation) object 'noise' ... 'texture'

The coordinates along the presentation dimension encode different aspects of each 'presentation' or experimental trial. For example,
stimulus_id represents the specific image used in the trial, while repetition indicates which repetition of the image is presented to the
monkey, starting from 0. Notice that when we average over the repetitions of the same stimulus, we eventually get 135 unique stimuli.

Try to investigate the coords more and answer the following questions (answers will be shown in the section of Additional materials):

1. How many presentation trials?
2. How many neural sites?
3. The temporal resolution of the recording is 1 ms per time bin. Then, how long is each trial?
4. Each neural site is recorded using a single quartz-platinum-tungsten microelectrode implanted in the macaque brain. Do you think each

neural site records the activity of a single neuron, or could it capture signals from multiple neurons? Explain your reasoning.

The xarray also has another attribute called attrs , which is a dictionary-like object that records some additional information.

for key, value in v1_data.attrs.items():
 print(f"The attribute {key} exists.")

v1_data_attributes = v1_data.attrs
print()
print(f"The id of the whole experiment is {v1_data_attributes['identifier']}.")
print(f"The id of stimulus set is {v1_data_attributes['stimulus_set_identifier']}.")
print(f"The stimulus set is a {type(v1_data_attributes['stimulus_set'])}.")

The attribute stimulus_set_identifier exists.
The attribute stimulus_set exists.
The attribute identifier exists.

The id of the whole experiment is movshon.FreemanZiemba2013.public.
The id of stimulus set is FreemanZiemba2013.aperture-public.
The stimulus set is a <class 'brainio.stimuli.StimulusSet'>.

Here, we can observe the identifiers for both the experiment and the stimulus set. Since one stimulus set can be used across multiple
experiments, the two identifiers are kept separate.

We saw that the stimulus_set is the instance of a Class called StimulusSet . Let's check it in the next section.

Here we check the stimuli .

Basics of StimulusSetkeyboard_arrow_down

stimuli = v1_data_attributes['stimulus_set']
stimuli

03/03/2025, 17:18 exercise4.ipynb - Colab

https://colab.research.google.com/drive/1ANoDra1YlHV2fKVSgNpb_mFdZ8wbBK1h#scrollTo=8728c240&printMode=true 7/8

image_id sample filename

0 21041db1f26c142812a66277c2957fb3e2070916 5

noise-
320x320-

im38-
smp5.png

21041db1f26c142812

1 0d9074b184dd4abbd8dd79500d8869e90e3759f0 15

tex-
320x320-

im393-
smp15.png

0d9074b184dd4abbd8

2 28528e98f687f3790cb2d35ef1374aef0ff12bb9 3

tex-
320x320-

im30-
smp3.png

28528e98f687f379

3 22eb327d95d9d18fc3cfdb3cb7122e49eb8cd5b9 13

noise-
320x320-

im18-
smp13.png

22eb327d95d9d18fc3

4 5a49c84be5539e3b1b7b4f767c74b1355cf5145a 12

noise-
320x320-

im18-
smp12.png

5a49c84be5539e3b1

...

130 65a263b58b098973995a40d39785f1776b3e757d 7

noise-
320x320-

im327-
smp7.png

65a263b58b09897399

131 1e4309bec2dc7f15d30dcb5768d6f5ae06928086 8

noise-
320x320-

im38-
smp8.png

1e4309bec2dc7f15d3

132 bad7530828a8c6aab2ebaa83f34a1353efe0c395 6

noise-
320x320-

im56-
smp6.png

bad7530828a8c6aab

133 b429ff650a6f868b5124cc04c6d79ec69fb35c73 6

tex-
320x320-

im48-
smp6.png

b429ff650a6f868b5

134 d01f48d87a4b49f50c021c612da9d3180488f6ba 10

tex-
320x320-

im30-
smp10.png

d01f48d87a4b49f50c

135 rows × 11 columns

We see a nice table that includes information on each stimulus in the stimulus set. In fact, the Class StimulusSet inherits from
pandas.DataFrame . This is a commonly used data structure in data science.

ignore this code if you cannot understand it immediately
print(f"The ancestor of StimulusSet is {type(stimuli).__bases__[0]}.")

The ancestor of StimulusSet is <class 'pandas.core.frame.DataFrame'>.

Let's look at some basics of the pandas.DataFrame .

03/03/2025, 17:18 exercise4.ipynb - Colab

https://colab.research.google.com/drive/1ANoDra1YlHV2fKVSgNpb_mFdZ8wbBK1h#scrollTo=8728c240&printMode=true 8/8

checking the shape of the DataFrame
print("\n* shape of the stimuli DataFrame:")
print(stimuli.shape)

data stored in DataFrame is also numpy array
print("\n* values of DataFrame:")
print(type(stimuli.values))

selecting rows by index
print("\n* first row:")
print(stimuli.iloc[0])

accessing the first element of the 'image_id' column
print("\n* first element in the 'image_id' column (first way):")
print(stimuli['image_id'].iloc[0])

accessing the first element of the 'image_id' column
print("\n* first element in the 'image_id' column (second way):")
print(stimuli.loc[0, 'image_id'])

slicing rows and columns
print("\n* slicing two rows and two columns (first way):")
print(stimuli.loc[[0,1], ['texture_type', 'image_id']])

slicing rows and columns
print("\n* slicing two rows and two columns (second way):")
print(stimuli.iloc[:2, [0,9]])

filter rows based on a condition
print("\n* rows where 'texture_type' is 'noise':")
print(stimuli[stimuli['texture_type'] == 'noise'].shape)

more pandas operations: https://pandas.pydata.org/docs/user_guide/basics.html#basics

* shape of the stimuli DataFrame:
(135, 11)

* values of DataFrame:
<class 'numpy.ndarray'>

* first row:
image_id 21041db1f26c142812a66277c2957fb3e2070916
sample 5
filename noise-320x320-im38-smp5.png
image_file_sha1 21041db1f26c142812a66277c2957fb3e2070916
image_file_name noise-320x320-im38-smp5.png
texture_family 38
resolution 320x320
id 133032
image_id_without_aperture 6ddcf4b55f9151ac77250706510dcd00fdfb466e
texture_type noise
stimulus_id 21041db1f26c142812a66277c2957fb3e2070916
Name: 0, dtype: object

* first element in the 'image_id' column:
21041db1f26c142812a66277c2957fb3e2070916

* first element in the 'image_id' column:
21041db1f26c142812a66277c2957fb3e2070916

* slicing two rows and two columns:
 texture_type image_id
0 noise 21041db1f26c142812a66277c2957fb3e2070916
1 texture 0d9074b184dd4abbd8dd79500d8869e90e3759f0

* slicing two rows and two columns:
 image_id texture_type
0 21041db1f26c142812a66277c2957fb3e2070916 noise
1 0d9074b184dd4abbd8dd79500d8869e90e3759f0 texture

* rows where 'texture_type' is 'noise':
(68, 11)

Besides the functionality inherited from pandas.DataFrame , the StimulusSet also has a dictionary-like attributed called stimulus_paths .

It stores the mapping from the stimulus_id to the actual storage path.

let's get the image path of this specific image
image_id = '21041db1f26c142812a66277c2957fb3e2070916'

access the image_path by:
first way - access the value of the corresponding key in the dictionary
image_path = stimuli.stimulus_paths[image_id]
second way - use the 'get_stimulus' api of 'StimulusSet'
image_path = stimuli.get_stimulus(image_id)

print(f"The path of {image_id} is {image_path}.")

show the image
pyplot.imshow(image.imread(image_path), cmap='gray')

The path of 21041db1f26c142812a66277c2957fb3e2070916 is /root/.brainio/stimulu
<matplotlib.image.AxesImage at 0x7fd840f30a10>

